Physics 12-04 Quantum Nature of Light	Name:
Black absorbs light	6,000 K
 It also that light 	(white hot)
• Blackbody	$I \uparrow V R$ (white not)
 Absorbslight 	.5 × 4,000 K
 Re-emitsthat light 	(red hot)
The color that a hot object () emits depends on its	EM radiation intensity (red pot)
• As the temperature, the total amount ofincreases	$UV = 0 \frac{1}{1} \frac{1}{2000} \frac{1}{\lambda(nm)}$
• Whilethe wavelengths are emitted, there is onewavelength	2,000
As the temperature, the peak wavelength gets	/ IR Visible
• The increased temperature atoms moveand theof the light increases.	range
• By $v = f\lambda$, the wavelength	
This graph does not matchphysics which is based onenergy	
Planck invented the idea that the frequencies emitted are based on	
• Energy is	
 Only exists inamounts 	
• Like the number of electrons in something must be anumber	
$\circ E = nhf = n\frac{hc}{\lambda}$	
• $n = 0, 1, 2, 3, \dots$ (# of)	
• $h = 6.626 \times 10^{-34} \mathrm{J} \cdot \mathrm{s}$	
• $f =$ frequency of light	
• Low frequency (long λ) light isenergy	
• High frequency (short λ) light isenergy	
Low temperature has lowso more lowlight	
High temperature has higherso more higherlight	
• Other things that are quantized	
•and	
O	
o	
How many photons per second does a typical 10W LED lightbulb produce if 80% of the electrical	energy is turned into useable

light with an average wavelength of 520 nm?

Compare the energy of one photon of UV light (λ = 250 nm) with IR light (λ = 890 nm).

Practice Work

- 1. Give an example of a physical entity that is quantized. State specifically what the entity is and what the limits are on its values.
- 2. Give an example of a physical entity that is not quantized, in that it is continuous and may have a continuous range of values.
- An AM radio station broadcasts at a frequency of 1,530 kHz. What is the energy in Joules of a photon emitted from this station? (HSP PP21.1) 1.01 × 10⁻²⁷ J
- 4. A photon travels with energy of 1.0 eV. What type of EM radiation is this photon? (HSP PP21.2) Infrared
- 5. Why do we not notice quantization of photons in everyday experience? (HSP PP21.6)
- 6. Two flames are observed on a stove. One is red while the other is blue. Which flame is hotter? How do you know? (HSP PP21.7) **Blue**
- 7. Your pupils dilate when visible light intensity is reduced. Does wearing sunglasses that lack UV blockers increase or decrease the UV hazard to your eyes? Explain. (HSP PP21.8) Increase
- 8. The temperature of a blackbody radiator is increased. What will happen to the most intense wavelength of light emitted as this increase occurs? (HSP PP21.9)
- How many X-ray photons per second are created by an X-ray tube that produces a flux of X-rays having a power of 1.00 W? Assume the average energy per photon is 75.0 keV. (HSP 21.22) 8.33 × 10¹³ photons
- What is the frequency of a photon produced in a CRT using a 25.0-kV accelerating potential? This is similar to the layout as in older color television sets. (HSP 21.23) 6.04 × 10¹⁸ Hz
- 11. Find the energy in joules of photons of radio waves that leave an FM station that has a 90.0-MHz broadcast frequency. (HSP 21.31) **5**. **96** × **10**⁻²⁶ *J*
- 12. Which region of the electromagnetic spectrum will provide photons of the least energy? Explain. (HSP 21.32)
- 13. What is the efficiency of a 100-W, 550-nm lightbulb if a photometer finds that 1 × 10²⁰ photons are emitted each second? (HSP 21.51) 36.1%